
Zelenium tests and common utilities are stored in erp5_ui_test business templates. Many other tests could also be found in
erp5_*_ui_test. Zuites are stored in portal_tests and are organized in Zuite recursively. A zuite is an set of tests stored as
Page Templates (see also HowToRunZeleniumTests).

${table_of_content}

Useful resource
XPath Checker
Selenium
Selenium HTML Command Referece(-ish)

Writing Zelenium Tests
Zelenium, how the name hints, is Selenium test tool built into Zope itself. It is accessible at
<instance>/erp5/portal_tests/manage_main. Make sure that you have business template erp5_ui_test installed.

To create a test, you need to create a Zuite first using drop-down menu on top-right corner. Zuite is a kind of folder and
contains all runnable tests. As the ID, use "<module>_ui_zuite", for example "renderjs_ui_listbox_zuite". Then navigate
inside your new Zuite and create a Page Template with ID starting at "test" such as "testMyModuleFormSubmit".

Example TestCase
Below is an example of test code that you could save as a Page Template :

<html xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Test My Module UI</title>
</head>
<body>
<table cellpadding="1" cellspacing="1" border="1">
<thead>
<tr><td rowspan="1" colspan="3">My Module Zuite</td></tr>
</thead><tbody>
<tal:block metal:use-macro="here/Zuite_CommonTemplate/macros/init" />
<tr>
 <td>open</td>
 <td>${base_url}/web_site_module/my_module_website/</td>
 <td></td>
</tr>
<tr>
 <td>assertElementPresent</td>
 <td>//a[contains(text(), 'Add')]</td>
 <td></td>
</tr>
<tr>
 <td>click</td>
 <td>//a[@data-i18n="Submit" and @type="submit"]</td>
 <td></td>
</tr>
<tr>
 <td>verifyTextPresent</td>
 <td>OK</td>
 <td></td>
</tr>
</tbody></table>
</body></html>

 Standard Zelenium Commands
Selector could be xPath expression (in form of "//expression") or simplified selector.

XPath selector works with all commands so it is the safest bet. It starts with //.
Simplified selector refers to subset of element types by default thus it is enough to specify uniquely identified attribute
of such an element. For example for type and select commands the selector can be "name=<input-name>".

Text (or regexp) can be either glob or regular expression form.

glob is UNIX style pattern matching and prefixed by glob: (eg. click, link=glob:person[0-9]id or assertText,
glob:Hello*Welcome)
regexp is traditional regular expression prefixed by regexp: (examples as above but with different prefix)

file:///srv/slapgrid/slappart22/srv/cloudooo-16/tmp/tmpg11oo_6b/erp5-HowTo.Run.Zelenium.Tests
http://slesinsky.org/brian/code/xpath_checker.html
http://www.seleniumhq.org/
http://www.seleniumhq.org/docs/02_selenium_ide.jsp#building-test-cases

 Command Name Target
(1. argument)

Value
(2. argument) Description

assertText selector text (or
regexp)

Verify textual content (TextNode in javascript) of a concrete
element identified by selector.

assertTextPresent text (or
regexp) - Verify that given text is present anywhere in the document. Useful

when using selector is impossible due to inpredictability.

assertElementPresent selector - Verify that given element is present in the document.

verifyValue selector text (or
regexp)

Verify current value of an input field. Works even for select. That
means dynamic value inputted by javascript or the user.

type simplified-
selector text Type test into editable input/textarea field.

select simplified-
selector

value=
<option-
value>

Select an option in a select box. Seems that option can be
selected only using value and not label.

pause value [ms] - Please do not use. It pauses execution for given amount of mili-
seconds. Use WaitForElement instead.

click(AndWait) selector - Click a click-able element (and wait for a page-reload - so this
extension is useless for SinglePage applications).

fireEvent selector event name Fire an event on matched element (eg. fireEvent,
dom=document.forms[1], submit).

store value variable name
Stores a static value in a variable. Later the variable can be
accessed by ${variable_name} or in javascript (command
storeEval) as storedVars['variable_name'].

storeText selector variable name Stores a text presented in an element matched by the selector.

storeEval javascript
expression variable name Executes javascript expression or builtin javascript script and

stores the resulting value in variable name.

verifyVisible selector - Verify element's visibility on the page.

Assert versus Verify is subtle but important. Verify continues the test if the condition fails. They are completely
interchangeable in the way that every assert* has its verify* alias.

Selenium User Extensions for ERP5
We have the following extensions.

assertPortalStatusMessage that checks the value of a portal status message.
assertFloat that basically acts as assertText, but converts both values to float before comparting them, with this 1
000.00 is equals to 1000.

Tips and Tricks
Beware responsive changes
When you waitForElement it might never show up because it is hidden in the smallest screens. Even though the tests are
running at 1280x1024x24 it is better to optimize your tests for 1024x768 to be super-sure I think.

Type a date
When using command type for input[@type="date"] the value must be in form YYYY-MM-DD. Keep in mind the leading 0 to make
single-digit numbers follow DD or MM pattern.

Selecting in a list field
When using selectAndWait command and the element is already selected, selenium hangs. The solution is to use assertSelected
before using selectAndWait, so if the selection is not what you expect it to be, selectAndWait will not be executed.

https://lab.nexedi.com/nexedi/erp5/blob/master/product/ERP5Type/tests/ERP5TypeFunctionalTestCase.py#L92

Keep in Mind
Reindex in the middle of a test
You should avoid doing useless reindex in the middle of tests. Every time you use it, this means the scenario you are
checking would surely not work without reindex. It is usually better when user can do many actions without the need to wait
for indexation. Though, indexing is still useful in various cases, like checking catalog search. In such case you could do as
follow :

<!-- reindex -->
<tr>
 <td>store</td>
 <td>javascript{selenium.browserbot.getCurrentWindow().location.href}</td>
 <td>current_location</td>
</tr>

<tr>
 <td>open</td>
 <td tal:content="string:${here/portal_url}/Zuite_waitForActivities"/>
 <td/>
</tr>

<tr>
 <td>assertTextPresent</td>
 <td>Done</td>
 <td/>
</tr>

<tr>
 <td>open</td>
 <td>${current_location}</td>
 <td></td>
</tr>

Tests should not rely on previous test runs
Test should have setUp and tearDown scripts which can prepare and clean up environment respectively
Test must not contains any hard coded values like user names, organizations, etc ... Instead configuration of former
can be moved to a Python script which can be used at test rendering time to dynamically generate test
Test should use a non manager account but a real ERP5 account so security is taken into account whenever test is
run
Test must be created if feasible in a way so that they can be reused and plugged into a production instance, run in it
without modifying production data
Common code can be grouped into a "library" of macros

Zelenium Hints
Take care when using 'open' rather than 'openAndWait'. This can cause random test failures whenever only 'open' (fire
and go one test execution) is used.
When you have to use "type" in selenium always assert if all fields and the save button is present, before use any type
into one page or any selection. This will prevent the tests become stopped waiting for confirmation in dialog is some
action is not possible.

Compatibility Notes
Zelenium 0.8 uses Selenium 0.6, and SVN trunk of Zelenium uses Selenium 0.8.3. And there are some incompatibilities.

getLocation() returns full URL instead of path.
We define getAbsoluteLocation() in erp5_ui_test_core. If you use assertAbsoluteLocation() or verifyAbsoluteLocation()
instead of assertLocation() or verifyLocation(), the test should work on both version.
isEditable() raises an error if the specified element isn't an input element.
We can't use assertNotEditable() or verifyNotEditable() for asserting "it isn't an input field".
Use
 to specify a new line in type(), assertText(), verifyText() etc. instead of a real new line in HTML code.
There is no way to write a test with new lines that supports both version.

${related_subject_list}

	Useful resource
	Writing Zelenium Tests
	Example TestCase

	Standard Zelenium Commands
	Selenium User Extensions for ERP5
	Tips and Tricks
	Beware responsive changes
	Type a date
	Selecting in a list field

	Keep in Mind
	Reindex in the middle of a test

	Zelenium Hints
	Compatibility Notes

