
Wendelin: data visualization and prototype of a Pandas-based
Inventory API

(Click here to view the Jupyter notebook used as base to build this entire blog post)

Introduction
The Wendelin project started in the beginning of 2015 with Nexedi as consortium leader in charge of managing the development of a big
data solution "made in France". Under the Wendelin umbrella there is the Movement Visualization (MOVIS) project. This project is
focussed on implementing data visualization features, like pivot tables and charts, using the scientific libraries already present in the
Wendelin project and adding even more to help with richer and interactive visualizations.

Motivation
Wendelin is getting more mature as the time goes and it is already being put to test with many prototypes. This time a prototype of the
Inventory API was created. The Inventory API is one of the areas of ERP5 that demands the most processing power to do calculations
over all the client's stock movements. These inventories also hold valuable information for their companies and they might even request
many inventories with different parameters for internal research, along with many tables and charts based on this data for better
visualization of important insights (like trends and cycles, for example).

Some inventories are so big that even MariaDB is taking too much time do calculate them. The current implementation of the Inventory
API relies on a very complex SQL query on the stock table. This stock table can have millions of rows, depending on the client, and this
makes the query very slow.

Talking about visualization of data, this prototype includes integration with PivotTableJs. This tool turns any dataset into a summary table
and adds a 2-dimensional drag and drop interface to allow any user to manipulate this summary table, turning it into something very
similar to what is found in older versions of Microsoft Excel. With included addons not only a table can be rendered, but various kinds of
charts, turning the pivot table into a pivot chart.

In the technical point of view, we had MariaDB as a single point of failure. It's very hard to decentralize and paralelize relational databases
in a transaction system. With Wendelin all the stock data that was inside MariaDB can be moved to storage system created specifically for
that purpose: NEO is a distributed, redundant and transactional storage designed to be an alternative to ZEO and FileStorage.

What is it?
It's an optional replacement or complement to the original Inventory API that's on early development and will be published soon. It's built on
top of Wendelin's Data Array to allow processing of volumes of data much bigger than the available memory. Thanks to Wendelin's Data
Array, which is compatible with NumPy's ndarray, we also take advantage of Pandas to create a Data Frame with all the data and have
advanced indexing and filtering features.

How to test it?
There are 2 steps before the user can actually use this prototype Pandas-based Inventory API: create the Data Array with stock movement
data and add the category information to each stock movement. After these two steps the array is ready for being filtered and the user
wishes.

First step: create a Data Array with stock movements information
The first thing to do is actually create and fill a Data Array with data from the stock table. To help import the data a class was created to
transform any ERP5 query into a Data Array with an equivalent data type. The SaleOrderModule_zGetQuantityList object is a simple
ZSQLMethod that gets and all the rows in the stock table, as simple as:

SELECT * FROM stock;

In [17]:

data = context.sale_order_module.SaleOrderModule_zGetQuantityList()
context.Base_convertResultsToBigArray(
 data,

http://nbviewer.jupyter.org/urls/lab.nexedi.com/snippets/109/raw
http://nbviewer.jupyter.org/urls/lab.nexedi.com/snippets/109/raw

 data,
 reference='WendelinJupyter'
)

Second step: import category information
Now it's time to import the category information from each stock movement to the Data Array. This is necessary in situations like, for
example, to get only the sock movements of a resource that belongs to a specific category. The method
Base_fillPandasInventoryCategoryList will take care of querying the catalog in the most efficient way possible to get the category
information needed and store it in the Data Array.

In [14]:

context.Base_fillPandasInventoryCategoryList(
 'WendelinJupyter',
)

Third step: filtering stock movements
Finally the Data Frame is ready to be filtered. Compatibility with the original Inventory API was kept in my mind while developing the
prototype: both functions receive the same parameters. The only difference in the prototype is that it returns a Pandas.DataFrame instead
of ERP5 objects. With the Data Frame the developer can do further processing to improve the visualization of the data: more filtering,
(multilevel) indexing, grouping, sorting and etc.

In [20]:

data_frame = context.Base_getInventoryDataFrame(
 is_accountable=True,
 omit_input=True,
 resource_uid=1060068,
 section_uid=1064700,
 from_date='2015-08-11',
 to_date='2015-09-13',
 simulation_state='planned',
 resource_product_line_uid='1048885'
)
data_frame.head()

<Data Array at /erp5/data_array_module/222>

<wendelin.bigarray.array_zodb.ZBigArray object at 0x7f5de6d49e50>

 date explanation_uid function_uid funding_uid is_accountable \
2 2015-08-12 1112292 0 0 1
32 2015-09-08 1112238 0 0 1
42 2015-09-07 1112240 0 0 1
122 2015-09-03 1112248 0 0 1
132 2015-09-09 1112236 0 0 1

 is_cancellation mirror_date mirror_node_uid mirror_section_uid \
2 0 2015-08-12 1049627 1049627
32 0 2015-09-08 1049627 1049627
42 0 2015-09-07 1049627 1049627
122 0 2015-09-03 1049627 1049627
132 0 2015-09-09 1049627 1049627

 node_uid ... \
2 1064700 ...
32 1064700 ...
42 1064700 ...
122 1064700 ...
132 1064700 ...

 resource_category node_category payment_category \
2 1048885,15668,1048717,15663 1048649,1049113,1048690 0
32 1048885,15668,1048717,15663 1048649,1049113,1048690 0
42 1048885,15668,1048717,15663 1048649,1049113,1048690 0
122 1048885,15668,1048717,15663 1048649,1049113,1048690 0
132 1048885,15668,1048717,15663 1048649,1049113,1048690 0

 section_category mirror_section_category function_category \
2 1048649,1049113,1048690 1046951,1049623,1049113 0
32 1048649,1049113,1048690 1046951,1049623,1049113 0
42 1048649,1049113,1048690 1046951,1049623,1049113 0
122 1048649,1049113,1048690 1046951,1049623,1049113 0

PivotTableJs integration
PivotTableJs is here for the rescue of users and developers who wants to get fast insights from their data. All they have to do is: put all the
data in a Pandas.DataFrame and use the external method Base_erp5PivotTableUI. This method is integrated with the ERP5 Jupyter
kernel and will render the pivot table user interface with the input data. You can interact with demo pivot table generated by the code
below.

In [427]:

import random
import pandas as pd

df = context.Base_getInventoryDataFrame(
 is_accountable=True,
 omit_input=True,
 simulation_state='planned',
 resource_uid=1046951
)

bar chart: sum of quantity vs date by resource_uid/node_uid
columns = ['date', 'resource_uid', 'quantity', 'quantity', 'node_uid']
columns_to_delete = df.columns - columns
for column in columns_to_delete:
 df.drop(column, axis=1, inplace=True)
context.Base_erp5PivotTableUI(df, 'https://localhost:2202/erp5')

This gif shows a demonstraction of the PivotTableJs UI running inside a Jupyter notebook from a Wendelin instance. Fed with planned
stock movements of the resource with UID 1046951 that are accountable and omitting all the input movements. Then columns are
dragged and dropped to organise data in a meaninful way: node_uid and resource_uid are moved to the rows and date to the columns
and now there is a "output movements of resource_uid at node_uid over time" table. Next step is modifying the aggregation function to the
sum of the quantity column to get the total output of the resource at the given nodes per day. After the data is organised the source is
edited: only dates between 2015-08-13 and 2015-09-09 are taken into account and the representation is changed from a simple table to a
beautiful line chart.

Conclusion
Wendelin is a project in constant evolution with a simple objective: it aims to bring all the tools known in the scientific community along
with their high performance to the ERP5 platform. Scikit-learn, statsmodels and Pandas are already integrated and even more integrations
are on the works. Everything backed by Wendelin's NumPy-compatible array to enable you to extend your computation beyond the
memory limits of servers without losing the valuable insights achievable through all the most famous scientific libraries in the Python
community.

122 1048649,1049113,1048690 1046951,1049623,1049113 0
132 1048649,1049113,1048690 1046951,1049623,1049113 0

 project_category funding_category payment_request_category \
2 0 0 0
32 0 0 0
42 0 0 0
122 0 0 0
132 0 0 0

 movement_category
2 1048795,1046951,1049627,1064700,1049627,104863...
32 1048795,1046951,1049627,1064700,1049627,104863...
42 1048795,1046951,1049627,1064700,1049627,104863...
122 1048795,1046951,1049627,1064700,1049627,104863...
132 1048795,1046951,1049627,1064700,1049627,104863...

[5 rows x 33 columns]

	Wendelin: data visualization and prototype of a Pandas-based Inventory API
	Introduction
	Motivation
	What is it?
	How to test it?
	First step: create a Data Array with stock movements information
	Second step: import category information
	Third step: filtering stock movements

	PivotTableJs integration
	Conclusion

